
Physics 08-01 Ohm's Law	Name:
Current	
• of of	
Amount of per unit	
	$I = \frac{\Delta Q}{\Delta t}$
• Symboly (Δt
 Symbol: () Unit: (A) 	
	es that give 12 VDC at 200 mA. How much charge flows through the circuit
in 1 hour and how much energy is used to deliver t	
Electrons are the that	through
Historically thought charges	
• current is the	
Flows fromterminal and int	
• current flows the	
signals travel near	of, but
travel much	
Each new electron one ahead	
$I = \frac{\Delta Q}{\Delta t} = q \tau$	nAv _d
\circ q = charge of each electron, n = free	ee charge density, <i>A</i> = cross-sectional area,
v_d = drift velocity	
Ohm's Law	
$I = \frac{V}{R}$ or $V = IR$	
• $V = \text{emf}, I = \text{current}, R = \text{resistance}$	$I = \frac{V}{R}$
• Unit: V/A = (Ω)	+
	V \$ <i>R</i>
Resistors	F
Device that offers to	of charges
wire has very	_ resistance
Symbols used for	
-	volume. The voltage is 12V. The current is used to produce a magnet which
is used to move the speaker cone. Find the resistant	ace of the electromagnet.

Physics 08-01 Ohm's Law	Name:
Practice Work	

- 1. Can a wire carry a current and still be neutral—that is, have a total charge of zero? Explain.
- 2. Car batteries are rated in ampere-hours (A·h). To what physical quantity do ampere-hours correspond (voltage, charge, ...), and what relationship do ampere-hours have to energy content?
- 3. Why are two conducting paths from a voltage source to an electrical device needed to operate the device?
- 4. In cars, one battery terminal is connected to the metal body. How does this allow a single wire to supply current to electrical devices rather than two wires?
- 5. The IR drop across a resistor means that there is a change in potential or voltage across the resistor. Is there any change in current as it passes through a resistor? Explain.
- 6. What is the current in milliamperes produced by the solar cells of a pocket calculator through which 4.00 C of charge passes in 4.00 h? (OpenStax 20.1) **0.278 mA**
- 7. A total of 600 C of charge passes through a flashlight in 0.500 h. What is the average current? (OpenStax 20.2) 333 mA
- What is the current when a typical static charge of 0.250 μC moves from your finger to a metal doorknob in 1.00 μs? (OpenStax 20.3) 0.250 A
- 9. Find the current when 2.00 nC jumps between your comb and hair over a 0.500-µs time interval. (OpenStax 20.4) 4.00 mA
- 10. A defibrillator sends a 6.00-A current through the chest of a patient by applying a 10,000-V potential as in the figure below. What is the resistance of the path? (OpenStax 20.7a) **1.67** $k\Omega$
- 11. During open-heart surgery, a defibrillator can be used to bring a patient out of cardiac arrest. The resistance of the path is 500 Ω and a 10.0-mA current is needed. What voltage should be applied? (OpenStax 20.8) **5.00 V**
- 12. (a) A defibrillator passes 12.0 A of current through the torso of a person for 0.0100 s. How much charge moves? (b) How many electrons pass through the wires connected to the patient? (See figure.) (OpenStax 20.9) 0.120 C, 7. 50 × 10¹⁷ electrons

- A clock battery wears out after moving 10,000 C of charge through the clock at a rate of 0.500 mA. (a) How long did the clock run? (b) How many electrons per second flowed? (OpenStax 20.10) 2.00 × 10⁷ s, 3.13 × 10¹⁵ electrons/s
- 14. What current flows through the bulb of a 3.00-V flashlight when its hot resistance is 3.60 Ω? (OpenStax 20.18) 0.833 A
- 15. Calculate the effective resistance of a pocket calculator that has a 1.35-V battery and through which 0.200 mA flows. (OpenStax 20.19) **6.75 kΩ**
- 16. (a) Find the voltage drop in an extension cord having a $0.0600 \cdot \Omega$ resistance and through which 5.00 A is flowing. (b) A cheaper cord utilizes thinner wire and has a resistance of 0.300Ω . What is the voltage drop in it when 5.00 A flows? (c) Why is the voltage to whatever appliance is being used reduced by this amount? What is the effect on the appliance? (OpenStax 20.22) **0.300 V**, **1.50 V**
- 17. A power transmission line is hung from metal towers with glass insulators having a resistance of $1.00 \times 10^9 \Omega$. What current flows through the insulator if the voltage is 200 kV? (OpenStax 20.23) **0.200 mA**